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The application of a particular transformation to the triadic integral results in an 
expression having the following advantages : (a) it satisfies global energy conservation 
in an evident fashion, independently of the accuracy of the energy-spectrum 
calculations; (b) it allows an economy of computational time; (c) it  shows certain 
symmetries in the behaviour of non-local interactions ; (d )  it  provides, for the non-local 
interactions contribution to the transfer function, an expression which is simpler and 
more compact than those existing, in spite of being more nearly complete ; (e) finally 
the calculated energy-transfer distribution is in good agreement with the experi- 
mental findings through a very large range of RA. 

1. Introduction 
From a practical point of view, the Simple Reynolds-average description of 

turbulent boundary-layer flows is often considered sufficient for engineers. However, 
from a fundamental point of view, there is no doubt that the calculation of the actual 
turbulent solution of the NavierStokes equations is desirable. Unfortunately the 
existing procedures suited to this calculation are, computationally, so heavy that at  
the present stage they can be applied only in extremely limited circumstances, 
irrelevant to engineering requirements. This is, in particular, true for the appealing 
spectral approach where the turbulent fluctuations as well as their correlations are 
Fourier-transformed from the physical x-space to the wavevector k-space, thus 
resulting in substantial simplification of the equations for the velocity correlation 
spectra and for the spectrum E(k) of the turbulent kinetic energy. Even in the 
simplest, isotropic case when E is a function only of k and there is only one equation 
to be solved, (l), the computational load involved in the calculation of the rate of 
energy transfer per unit wavenumber between different wavenumbers through the 
so-called triadic (or bipolar, or convolution) integral, (2), may still be too heavy in 
extreme conditions. 

A substantial effort has been, and is being, made in order to reduce the computation 
time of the triadic integral without sacrificing the accuracy, accuracy being considered 
important in relation to the need to satisfy the global energy conservation. A t  low 
Reynolds number RA, when the spectrum is narrow, the number of calculation points 
in the integration area of the triadic integral necessary to reach the desired accuracy 
may still be acceptable, as, for instance, in the numerical integration scheme of Leith 
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& Kraichnan (1972). However, the spectrum widens when BA increases so that the 
necessary number of of points, and with it the computation time, increases 
substantially. In  an effort to overcome the difficulty Lesieur & Schertzer (1972) have 
used the area integration of Leith & Kraichnan (1972), only on a smaller integration 
region, and have calculated the effects on the remaining cutoff areas by a specific 
procedure (to which we will come back later) thus succeeding in reducing the 
computation time. 

The present authors have developed a different procedure which succeeds in 
lowering the computation time and presents other advantages. It is based on a 
transformation which changes the integration area from infinite to finite and allows 
the eventual reduction of the accuracy required in order to guarantee energy 
conservation. In addition it allows a better physical comprehension of certain 
compensations in the energy transfer between wavenumber triads. The advantages 
of the transformation apply in the most general case. Here, however, we shall 
restrict our considerations to the isotropic case. 

2. The transformation of the energy equation 
For isotropic turbulence the energy spectrum is a solution of Lin's equation 

"("+2vk2E(k) at = T(k), 

where E(k)  is related to mean turbulent energy corresponding to the velocity 
fluctuation v by 

$(wz) = jok E(k)dk .  

The expression for T(k) is usually of the form 

T(k) = 1 W, p, q )  dp dq, 
p + q + k = 0  

with the function Z depending on the model. The functions E, T and Z depend, of 
course, also on the time. The condition p + q + k = 0 means that the wavenumbers 
p, q and k must form a triangle or, as usually stated, a triad. Explicitly one can write 

Hence the integration area is a half-infinite strip on the (p, q)-plane, as shown in 
figure l(a). The integral is therefore the sum of its value T'+ calculated on the 
triangle to the left of the line p = k and of its value T- pertaining to the rest of 
the strip, to the right of p = k. Now for T+ make the trivial substitution 

so that 

p = B k ,  q = y k ,  

dpdq = k'dpdy, 

(3) 

the limits of p and y being 

o < p < 1 ,  l - P < y < l + P .  
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FIGURE 1. (a) Domain of integration in the (p, q)-plane. 
( b )  Domain of integration in the (/?, 7)-plane. 

For T- apply a different substitution 

so that 

the limits of B and y being the same as in the previous substitution. Observe that 
the triangles ( k , p ,  q)+ and (p, k ,  q)- are similar for P, y assigned. Finally we have 

1+B 

0 1-8 
T ( k )  = ; s’ dP d r  [ k 3 W , P k ,  Yk) +P3w3P, P ,  YP)l, (5 )  

with p = k /B;  hence, in the plane (@, y) ,  the integration is to be performed only on 
the triangle of figure 1 (b). 

In the EDQNM and in many other models 2 is given by 

Here the geometrical factor B is given by 

P B ( k , p , q )  = j - ( ~ ~ + z ’ ) ,  

x, y and z representing the cosines of the angles opposite respectively to k ,  p and q 
in the triadic triangle. D’ is the ‘relaxation frequency’; it  comes out of the 
Markovianization of a certain integral with respect to t ,  and is given, for most models, 

1 - e-l~(k)+~(P)+~(q)lt 
by 

7 ( k ) + 7 @ ) + 7 ( q )  ’ 
D‘(k,p, q )  = 

the ‘damping function’ q(k )  depending on the model. 
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After transformation to the (B, y)-plane we obtain 

with 

S+(k, P, y )  = S(k, P, y )  = 

S-(k,P,y) = s(;,B,Y). 

Here the geometrical factor is 

W , Y )  = PYB’ = 2p2Y(ZY+Z3), 

the expression x y  + z taking the same value after the application of the substitution 
(3) and (4) because of the similitude of the two triadic triangles. 

The result is 

B vanishes on the two sides y = 1 */3 of the integration area, and on the curve 
B2 = y2(1  - y 2 ) / ( 2 -  y 2 )  within the same area. 

We have also from D’ the relaxation frequency 

Clearly, the function (7), as well as S(k//?,p, y ) ,  vanishes on the perimeter of the 
domain of integration. 

The transformation we have applied to  obtain (6) for the transfer function, can 
also be used on the so-called energy flow (defined below) with the result 

n(k) = s,” T(kl)dkl = ~ ~ d ~ ~ ” d y [ l L ( k . P . y ) ]  = f l+(k)+f l - (k)  
1-Y 

with 

The global energy conservation condition, expressed by 

JOm T(k) dk = 0, 

is immediately seen to be satisfied from (6) and (7) after inverting the order of the 
integrations, since for fixed B and y d In 1 = d In (k/P). The fact that  the present form 
for T(k) satisfies energy conservation without requiring T+ and T- to  be computed 
with extreme accuracy certainly represents a substantial advantage of the proposed 
transformation. For the conservation i t  is sufficient that S be taken as the same 
function in the evaluation of Tt and T-, no matter how accurately this function has 
been determined. It is only important that, when S(k ,  p, y )  is known, say, at discrete 
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FIQURE 2. Discretization of the domain of integration. 

values of log k ,  the interpolation to obtain S(k//3,/3, y )  be properly performed. And, 
of course, this applies also to the calculation of $(k,  /3, y )  or of 

if a check of the energy-conservation condition, although unnecessary, is desired. In 
this case one must bear in mind that what one is checking is the interpolation and 
integration procedures, rather than the energy-conservation condition. 

3. Numerical scheme 
The principal aim of the applications presented in this section is the verification 

of the advantage of the present transformation. Its potential for reducing the 
computation time was investigated, but only partially ; a deeper investigation was 
deferred to a succeeding paper. Simultaneously its possibilities with respect to the 
so-called non-local interactions were examined. 

The discretization of the energy equation (1 ) followed the Herring-Kraichnan 
(1972) scheme 

where different definitions of T,(k, tn )  can be used. For instance, Cambon, Jsendel 
& Mathieu (1981) have used the definition T,(k, t,) = T ( k ,  t ,) .  The maximum value 
of At for this explicit technique is, however, severely limited. Better results are 
obtained with Herring & Kraichnan’s (1972) implicit scheme 

and solving it by the predictor-corrector technique. 
The integration domain was discretized using the scheme of figure 2 .  Here the 

triangle of figure 1 (b) has been subdivided into 2 P  equal elementary triangles by 
splitting each of the two equal sides in N parts. In the figure N = 3. According to 
a known rule, if the function to be integrated is quadratic in P and y ,  its mean value 
on each elementary triangle is the arithmetic mean of the values at the middle 
points of the three sides. This simple rule has been used as an approximation in the 
actual case. The general result for 

fl Pl+B 
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FIGURE 3. Energy spectra obtained for F = 1 (-O-) or F = 3 (- x -). R, = 140, N = 10. 

is 

This general expression is simplified when calculating P, T- or T ;  in which case 
one must take G(/3,?) = S ( k , P , y )  or S(k/ /3 , /3 ,y)  or their difference, all three 
quantities vanishing, as noticed previously, on the perimeter of the domain of 
integration, so that I is reduced to the first two sums. 

The discretization we have used has the advantage of a second-order accuracy for 
the same number of points as first-order accuracy obtained with the usual logarithmic 
discretization. However it has the drawback of requiring interpolations. These were 
performed to obtain good accuracy by the time-consuming cubic-spline technique. 
A comparison for equal accuracy between the two types of discretization is planned 
for future work. 

Of course, the number F of points per octave of the log k discretization may have 
a noticeable effect on the accuracy, particularly in certain regions. This is clearly seen 
from figure 3, where the two curves of log E were obtained at RA = 140 with N = 10 
and F = 1 or 3 respectively. It appears that due to the interpolation procedure an 
F < 3 may be a source of substantial oscillations and errors in particularly sensitive 
regions, such as the transition to the dissipative region. 

The choice of N is only a matter of accuracy. Figure 4 shows the profiles of kT(k) 
calculated at RA = 840 with N = 3, 5 and 10. It appears that N = 3 is definitely too 
low, while the transition from 5 to 10 has minor effects, except when kT is close to 
a peak. Observe that the number of necessary interpolations is a t  most 115 for N = 5 
and 980 for N = 10. But the important thing is that, despite the inaccuracy resulting 
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FIQURE 4. Distribution of kT(k)  obtained with N = 3 (-O-), N = 5 (- x -). 

from a low N, the energy conservation is satisfied equally well in the three cases. This 
seems to be a positive achievement of the present transformation, as already noticed 
in $3. 

4. Applications 
The procedure outlined above has been systematically applied using the EDQNM 

model to a certain number of cases for which calculations have been performed by 
other authors using different models or techniques. The common features were: 
prescribed values of RA(0) and a similar initial energy distribution given by 

where E p  indicates the peak value of E and k, the corresponding wavenumber. The 
resulting initial Reynolds number R(0) is 1.5216RP, R, = ( l / v )  (Ep/kp)t  being the 
Reynolds number corresponding to the energy peak which must be properly chosen 
in order to obtain the prescribed RA(0) with an assigned v. Usually this is achieved 
by properly choosing the value of v leaving E, and k, unchanged. 

The expression of q(k )  generally adopted for the EDQNM model (Pouquet, Lesieur 
& Andre 1975; Lesieur & Schertzer 1977; Cambon et al. 1981) is 

ql (k)  = vk2+A,(rk:E(k , )dk , ) ! ,  0 (10) 

with A, x 0.355-0.360. 

the simpler expression of Orszag (1970) 
For the limited purposes of the present investigation we have often ohosen to use 

q,(k) = vk2 + A,[k3E(k)]f, (11) 

except when discussing precisely the influence of the q choice. For E(k)  the two ex- 
pressions coincide provided A, = A,(:)$. This would suggest the value A, = 0.307 
+0.312. However, because of an oversight the value used in the present application 
was A, = A, = 0.360. 

The examples go from low to very high R,(O). 
P L M  181 14 
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FIGURE 5. Distribution of s(t) and c(t)/c(O) resulting from different models or procedures, (-0-) 
TFM, (-+-) DIA, (-x-) EDQNM, with ~ ~ ( l l ) ,  (-A-) Direct Simulation (Orszag & Patterson). 
R,(O) = 35. 

4.1. Low R,(o) 
Herring & Kraichman (1972) have compared the results obtained with TFM and DIA 

with the results of DS by Orszag & Patterson (1972) for many cases starting from 
different initial spectra, among which was the initial spectrum considered here, with 
different R,. We have calculated here with the EDQNM and (11) forp(k) the case when 
R,(O) = 35. The calculations that follow were obtained with N = 10. Figure 5 shows 
the behaviour of the skewness and the total dissipation. Our results are comparable 
with those of Herring & Kraichnan (1972). Our skewness matches the values obtained 
from DS better. 

4.2. Mean R,(O) 
This is the case calculated by Newman & Herring (1979) with the TFM method applied 
to the diffusion of a passive scalar. Here we shall consider only their results related 
to the energy spectrum and compare them with the results we obtain using the EDQNM 

method and (1 1) for l;l(k). The initial R,(O) is 200. Figures 6 (u-b) show the comparison 
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FIQURE 6. (a) Total kinetic energy &( t ) ,  obtained with R,(O) = 200. (b )  Skewness s(t), 
obtained with R,(O) = 200, (-O-) TFM, (- x -) EDQNM. 

concerning the developments of Q = 2 < u )  and the skewness S as functions oft. For the 
f i s t  quantity the comparison is quite favourable with the exception of a difference 
in the duration of the initial phase, necessary to achieve an equilibrium condition. 
In  equilibrium, approximating by Q - t-", n is 1.40 for the EDQNM and 1.38 for the 
TFM. The experimental value of Yeh & Van Atta  (1973) is 1.34. For the other two 
quantities there are important differences (especially for S) during the initial phase. 
However, the comparison is very good once equilibrium is attained. 

4.3. High and very high RA(0) 
The two cases considered here are those studied by Andr6 & Lesieur (1977) relative 
to R = @ / ( v k , )  = 813 and 32800. The corresponding RA(0) are 1330 and 53500. 

We are presenting this time more details (available, of course, also in the previous 
cases with analogous results, but not presented here) in order to support the 
statement we made a t  the end of $1  about the help our transformation provides for 
the physical comprehension of the interactions. Figure 7 shows the values of kT+, 
kT-  and kT for N = 3,5 ,  10 for RA(0) = 1330 and t = 6.0. Even the last value is far 
from sufficient to ensure the proper evaluation of T* . However, the kT values appear 
to be properly evaluated. 

The corresponding structure of the triadic interaction is represented in figure 8 (a-d). 
The isolevel plots of S+ and S- are shown on the plane p, y for four values of k and 
N = 10. Of course, both quantities vanish, with B(B,y),  on the periphery of the 
domain of integration, and on a particular line within this area. For sufficiently low 
values of B, S* can reach appreciable positive peaks, with a tendency to have roughly 
symmetrical negative peaks in the region A > 1. Another positive peak is found near 
the corner p = 1, y = 0 where, when y is sufficiently small, S* can take appreciable 
values in spite of the low values of B. Substantially lower values are observed when 

is close to 1 and y > 1 in spite of the high value of B. Observe that in the figures 
14-2 
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FIGURE 7. Distribution of kT* and kT, obtained with N = 3 (-O-), N = 5 (- x -), 
N = 10 (-A-), RA(0) = 1330, t = 6.0, RA = 140. 

some of the peaks may become too feeble to appear on the isolevel plots. However, 
it is a simple matter to calculate approximate locations for the peaks in every case. 

They are shown in the figures by crosses. A t  low k they are quite inaccurate with 
respect to the approximate numerically obtained positions. The accuracy improves 
at  high k. 

The roughly antisymmetrical behaviour of S* when /3 is small has the result that 
when calculating the integral in y appearing in (6) the contributions from positive 
and negative portions have a tendency to cancel each other. In other words between 
the two regions y 2 1 there is, for small /?, an intense transfer of energy which does 
not appear finally in T*. Similarly for small y the contributions from the high- 
est values of s+ almost cancel those of s-. Hence there is an intense transfer of 
energy between the + and - regions which, after integration, does not appear in 
T=T+-T-.  

The trends appearing at  R,(O) = 1330 are confirmed at  R,(O) = 53500. The isolevel 
plots of S* are not reported here. They are similar to the previous ones, but with 
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FIGURE 8. Isolevel plots of S* with R,(O) = 1330, t = 6, R, = 140 at (a) logk = 0, 
( b )  l ogk  z 0.5, ( c )  logk = 0.8, ( d )  logk N 1.4. 
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FIQURE 9. Distribution of kT(k) / e .  Comparison between computed (-, R, = 840; - - -, 

R, = 137; -.-*-,RA = 35) and experimental values (0,  R, = 951; *, R, = 240; A, R, = 35). 

the widening of the k-range the peaks come closer to the points p = 0 and y = 0, and 
their magnitude tends to increase, thus increasing the integration problems. For 
instance, the maximum value of S* for y + 1 is found around y = 0.006 and 
/3 = 0.996 and is 150 times larger than their values at y = 0.1, p = 0.95. 

4.4. Comparison with experimental results 
It would be, of course, quite interesting to be in possession of experimental results 
relative to the distribution of the energy-transfer rate among all possible triads. Such 
results are not available, and even simpler results, such as those concerning T(k, k') 
which represents the net transfer between two spherical wavenumber shells (as 
suggested by Helland, Van Atta & Stegun), have not been obtained. 

The only thing we can compare on figure 9 is the distributions of the global transfers 
T(k) with those obtained by Helland et al. (1977) in the same range of R,. 

The computed curves show the expected collapse of the curves of kT/e  (e = dis- 
sipation) around k, = (€1~~):. The experimental curves do not exhibit a similar 
collapse, probably because of experimental difficulties. The general shape of the 
curves is quite similar, with maxima and minima predicted within the same 
uncertainties as those reported by Helland et al. (1977) when deriving the experimental 
values in two different ways. Observe that, as found experimentally, the so-called 
inertial range does not correspond to almost vanishing T(k) ,  although the k-f 
behaviour is followed almost perfectly over a rather wide range (see figure 3 for 

4.5. Effect of the damping formula 
We found it  instructive to  compare at these R, the results obtained with the two 
different q ( k )  expressions q1 (10) and qz (1  1) .  I n  addition we have computed with the 
simplified expression 

RA = 140). 
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FIGURE 10. Total energy &(t)  resulting from EDQNM with different ~ ( k )  and D given by: -0-, 
equations (lo), (9); -A-, equations ( l l ) ,  (9); -x - ,  equations (lo), (12); -0-, equations (12), (15). 
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FIGURE 11. Skewness s(t) resulting from EDQNM with different q(k) and D.  Legend as figure 10. 
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FIQURE 12. Transport power n(k) and Kolmogoroff coefficient E ( k ) k k / 3  resulting from 
EDQNM with different ~ ( k )  and D. Legend as figure 10. 

obtained by suppressing the exponential at  the numerator of (9) and with the other 
simplified expression, 

suggested by Pouquet et al. (1975). To our knowledge this comparison has never been 
presented in literature. The results are reported in figure 10, where the values of the 
total turbulent energy &(t)  are shown. It is clear that the suppression of the 
exponential in (12) for D has the effect of producing a premature drop of Q. We see 
that the results with (9) and (lo), or (13) and (12) are appreciably different, 
contradicting the statements of Pouquet et al. (1975). The results obtained with (9) 
and (11)  appear to be close to the latter ones. 

The damping function and the relaxation-frequency expression have a more 
important effect in the higher-wavenumber regions, as shown by the strong effects 
on s(t) from figure 11.  Equation (12) produces a flat initial region, in contrast with 
the results of the other cases. This might be the cause of the poor prediction obtained 
by Cambon et al. (1981) when compared with the experiments of Compte-Bellot & 
Corrsin (1971). Aupoix (private communication) reached the same conclusion. All 
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FIQURE 13. (a) Domain of integration in the (p, q)-plane for kTN,. 
(b) Domain of integration in the (@,y)-plane for kTN,. 

schemes predict the same asymptotic value for large times. Finally figure 12 shows 
the distribution of the Kolmogoroff coefficient E(k)  kid and of the transport power 
n(k). The differences are rather small among the Kolmogoroff coefficient distributions. 
In all cases an extensive inertial region is found, with the characteristic bump near 
the maximum positive kT. Larger differences are present among the transport power 
distributions. 

4.6. Non-local interactions 
The distributions of S* show that difficulties appear in the process of integration 
necessary to obtain kT* when R, increases, because the wavenumber range becomes 
wider and high peaks appear at low p or y. The corresponding contributions to the 
integrals appear to be due to interactions between the two wavenumbers of 
comparable magnitude and one much smaller. They are generally indicated as 
non-local interactions. In  an effort to save computation time when calculating these 
interactions, Lesieur & Schertzer (1977) following a suggestion of Kraichnan (1976) 
used narrower cutoff limits, associated with a particular analytical procedure for the 
evaluation of the non-local interactions. 
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Here we will show that the Lesieur & Schertzer technique may be applied with 
advantage to our transformed energy equation (6). We choose a small scale ratio a 
and we call non-local interactions those for which 

inf(k,p,q) ~ a. 
SUP (k?  P, q) 

With the usual formulation in the (p, q)-plane, this means that we have to calculate 
the contribution to the double integral (2) of the shaded area of figure 13 (a) .  For the 
transformed integral (6), the integration area for the non-local interactions is given 
by the shaded area of figure 13(b). The lower one, 1, corresponds to small values of 
y and Po = 1 -p, the upper one, split into 2 and 3, to small p and yo = y-  1 .  Area 3 
has been included for the sake of completeness, since it is a consequence of the 
inequality above. It is included in the developments of Lesieur & Schertzer. But in 
our opinion its contribution should be disregarded if (as in our case) the numerical 
integration leaves out only the areas y < a (area 1) and p < a (area 2). 

The result for the contribution T N L  is given by 

kTNL = kT,+kT2+kT3. 
Here 

The computation is straightforward. For small Po or yo we develop the integrand 
in corresponding powers and perform the second integral of the above expressions. 
The complete results are given in the Appendix, from which we transcribe only the 
equations for areas 1 and 2 according to our observation above : 

With the complete expressions given in the Appendix for 7, and 72 we have m = 6, 
n = 7 ,  so the error may be quite small even for a not far from unity. However, the 
complete expressions require the calculation of derivatives with respect to k ,  p, y up 
to a third order of E and D ,  a troublesome task. If, however, the last term of the 
expressions of 7, and T~ is dropped a fortunate cancellation takes place and only 
first-order derivatives survive, while the value of m and n drops to 5 ,  which is still 
a very satisfactory value. The corresponding expressions for 7, and 72 are reported 
here : 

2 a  
7 1 ( k , y )  = k -- [ 15 i3k 

72(k, P)  = i%k4[E(/3k) -P2E(k)1 Yo 

with the expressions for X,, X, and Yo given in the Appendix. 
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FIGURE 14. Behaviour of local, non-local and total energy transfer (a) log k = 0; (a) log k = 1.66. 

To analyse the influence of the parameter a on the evaluation of the energy transfer, 
various calculations, based on the EDQNM closure, have been performed for the 
decay of isotropic turbulence of a flow with R,(t = 0 )  = 1330. The calculations have 
been made using four points per octave. Figure 14 shows the local, non-local and total 
energy transfer at t = 6 and at two values of k where kT reaches respectively the 
minimum and the maximum value. The non-local interactions due to the area 1 have 
been split in two parts : the first one kTlo due to the zeroth-order term in the expression 
of 71(k ,  y )  and kTll due to the first-order term. At low k the effect of non-local inter- 
actions is smaller than the effect at high k .  The contribution of the kTll term, which 
was not considered by Lesieur & Schertzer, is sensible at  high values of a as expected. 
The non-local interactions at high values of a overcome completely the effect of local 
interactions. A t  high k the non-local interactions due to area 2 have an opposite effect 
with respect to the interactions due to area 1. Although the local and non-local 
interactions terms show sensible variations with the parameter a ,  it is very important 
to notice that the total transfer kT remains almost constant up to substantial values 
of a. The use of very high values of a for the calculation allows a reduction of 
computational time. As already observed the kTl, term was not considered by Lesieur 
& Schertzer who kept only the lowest-order term of the development with the results 
that m = n = 3 only. It is also to be noticed that our expressions are more compact 
and easier to handle than those of Lesieur & Schertzer despite their being pushed to 
higher order and including the variation of 0; which was taken as constant in their 
paper. 
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5. Conclusions 
We have shown that a particular transformation of the infinite (p, q)-strip on which 

the triadic integral has to be performed produces a rather simple expression to be 
integrated on a finite area, with the result that faster calculations can be done. The 
most interesting aspect of the transformed integral is that when calculating numer- 
ically the transfer function T the energy conservation condition Tdk = 0 is 
automatically satisfied even when knowledge of the corresponding spectrum is not 
quite accurate. Accuracy, however, is an important requirement for the standard 
integration in the (p, q)-plane. 

The transformed integrand consists of two parts, S+ and S- .  A t  high RA (but even, 
to a certain extent, at  low RA) these quantities present peaks in certain regions where 
one of the three wavenumbers of the triad is substantially smaller than the other 
two (non-local interactions). Due to certain symmetries of these peaks (clearly 
apparent in the transformed expressions) it appears that the effect of the peaks tend 
to cancel. This is verified by analytically computing the non-local interactions 
following the suggestion of Lesieur & Schertzer (1977).  The resulting expressions are 
of a more compact and symmetrical form than those obtained by the above authors. 
In addition they are pushed to a higher order of accuracy and they include the 
variations of D (which was kept constant by the above authors). The use of our 
non-local corrections may substantially reduce the overall T-computation time. It 
is also shown that the non-local corrections satisfy energy conservation by 
themselves. 

Appendix 
From (14), developing and integrating in Po we have 

KTl = 5,” ~ ~ ~ ~ ( k , y ) d y + O ( a ~ ) .  

Here 

y z  Y2 
T1 (k, 7) = 2 B + - (51  - 3Sp - Spp)  + 210 (2“p - 6Zp - 28Sp - 3gpp - 9Bpp + 2Zppfl), 

l5 1 24 

where 

and the superposed dots and the indices indicate partial derivatives with respect to 
x = Ink and to $ while the superposed bar means that the derivatives are calculated 
a t $ =  1. 

Switching the integration order we have to O(u5) 

JOm Tl dk = Jou y2 dy J:: T1(k, y )  dz = 0, 

since T~ can be expressed as the derivative with respect to x of an expression vanishing 
at the limits +_ 00. 

Similarly we obtain from (14), developing and integrating in yo, 
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where 

72(k, /3) = k4[E(/3k) - p E ( k ) ]  {&(55 + a",,) + &/?(63d + 14C?,, - 4 4 ~ 7 ~  - 4Zm)}, 

73(k, /3)  = k4[E(/34-pE(k)] {a(1-A2)d+g(1-A2) [(4+5A+6A2+3A3)a" 

+ (2  + 4A + 6A2 + 3 4  a"J 

+&# (1 -A2), [3(3A2- 1) a"+ 2(4 + 5A2) Z7+ 2( 1 + 2A2) C? . , , , ] } ,  

where u@,P,y) = W 9 / 3 , r ) E ( r k ) / y 2 ,  A=l/a-1//3 

and the tilde indicates that u and its partial derivatives are calculated a t  y = 1. 

respect to x and /3, that to all orders 
Since dln k = dln (k / /3)  it is evident, after inverting the integration order with 

s," T, dk = JOw T, dk = 0. 

Altogether we have, within the order of the calculation, 

JOw TNL dk = (T, + T, + T,) dk = 0, 6 
which expresses energy conservation for the non-local corrections. 

More explicit expressions for 71, 7, and 7, are the following obtained considering 
all quantities to be functions of x = In k, so that In (Bk) = x + b,  and In (yk)  = x + c, 
with b = ln/3 and c = lny. 

71 = k4 [&(& + 4x0) + ih'(& + 4x1) + &')', (& + 4x2)19 
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where 
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Yo = ( 8 + 3 E ) D + E D , ,  

2, = (1-A2)2ED, 

2, = (1  - A,), [2( 1 + 2.42) (ED + 28D, + ED,,) 

Y2 = (4E+ SP- 130E- 133E) D + 2(6E+ SB - 65E) D, + 4(3E+ 2E) D,, + 4ED,,,, 

21 = (1 - A ) ,  [(2 + 4A + 6A2 + 3A3) (8D+ ED,) - 3A( 1 + A)2 ED],  

- 2( 1 + 5.4,) (@D + ED,) + ( 1 3.4, - 7) ED] , 

with A = l/a-l/p, 
.,. .w 

D = d , ;  a,=-; ~ T , I ;  D,,=-al~+2d2rj2; D,,, =-dlq+6d2qq-6&7j3; 

the do,&, d ,  being given by the corresponding barred quantities with $ = q ( x + b )  in 
place of i;l = v ( x + c )  and a3 by 
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